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Abstract—The Internet of Things (IoT) has attracted signif-
icant attention from both academia and industry, thanks to
applications such as smart cities, smart buildings and intelligent
traffic management. These systems rely on data, collected from
IoT devices, that are sent to the cloud for analytics. Data are
either used for near real-time decisions or stored for long-term
analysis. However, in highly distributed IoT systems, missing or
invalid data may appear because of different reasons including
sensor failures, monitoring system failures and network failures.
Analyzing incomplete datasets can lead to inaccurate results
and imprecise decisions, with negative effects on the target
systems. Also, due to the increasing size of such systems and the
consequently increasing amount of data generated from sensors,
recovery of incomplete datasets for analytics on the cloud is often
infeasible, due to the limited bandwidth available and the strict
latency constraints of IoT applications.

We propose a novel semi-automatic recursive mechanism for
recovery of incomplete datasets on the edge that is closer to
the source of data. This mechanism enables efficient recovery of
incomplete datasets employing different forecasting techniques
for multiple gaps, based on user specifications. We evaluate our
approach on datasets coming from the context of smart buildings
and smart homes. The experimental results show that our ap-
proach is able to identify multiple gaps, then recover incomplete
datasets, decreasing forecasting error by up to 82.68%, and
reducing running time by up to 52.38%.

Index Terms—Edge Computing; Internet of Things; time
series; incomplete data; data recovery; forecasting techniques.

I. INTRODUCTION

In recent years, we have seen the proliferation of the Internet
of Things (IoT) systems [1], such as smart agriculture [2],
smart buildings [3], smart cities [4] or intelligent traffic
management systems [5]. Such applications rely on monitoring
of parameters such as temperature, movement, heart rate,
electricity consumption, radiation and air quality, coming from
plenty of sensors. Collected data have to be analyzed in order
to allow applications to perform timely actions. Due to the
limited storage and computing capabilities of sensors, IoT
systems often rely on cloud computing services to perform
needed analysis [6], [7].

However, performing data analytics in the cloud requires the
transfer of big amount of data from sensors to geographically
distributed data centers, often very far from the data source.
This raises a number of issues, since critical applications like
eHealth, smart grids or intelligent traffic management have to
process a big amount of data with strict accuracy and latency

requirements [8], [9]. Also smart building systems have such
requirements for automatic management of heating and cool-
ing systems, either to foster energy efficiency or to support
energy demand management systems integrated with smart
grids [10]. Moreover, performing data analytics in the cloud
may be infeasible, since current bandwidth capabilities and
network infrastructures cannot easily scale with the growing
amount of data generated by sensors [11].

Edge computing has been proposed as a solution to these
issues. Use of edge nodes allows exploitation of storage,
compute and network resources across cloud boundaries [12]
bringing processing closer to data sources, and thus help-
ing to perform near real-time decisions for low-latency IoT
requirements [13]. Nonetheless, errors, missing values and
outliers may appear in data collected by sensors, due to (1)
the highly distributed nature of IoT systems; (2) monitoring
system failures; (3) data packet loss in sensor networks; (4)
aging of the sensor; (5) changes in external conditions; or (6)
periodic failures of some of the sensors [14].

Performing analytics on incomplete/invalid datasets can
cause problems in different contexts, leading to inaccurate
results and imprecise decisions [15], [8]. For example, many
smart buildings manage renewable energy sources employ-
ing automation systems that control and improve energy
efficiency [3]. Taking decisions based on incomplete/invalid
datasets may affect such systems introducing imbalances in
overall building management system and connected smart grid
systems [16]. Also, in intelligent traffic management systems,
traffic situation is constantly monitored by different types of
IoT environmental traffic sensors [5] to optimize/control traffic
flow and avoid collisions and congestions. Inaccurate analysis
due to incomplete data may affect traffic monitoring, with
negative effects on collision and congestion avoidance sys-
tems. Therefore, it is important to efficiently remove outliers
and recover missing values in the collected datasets before
processing them.

While dealing with the accuracy of near real-time decisions,
we proposed in [17] an architecture model and corresponding
algorithms for efficient edge storage management. However,
we did not consider how to deal with datasets with missing
and/or invalid values, which impact the process of predicting
critical events in the future. Several papers discussed the
reconstruction of incomplete datasets [18], [19]. However,
these works do not consider the time criticality demands



in the context of IoT applications and improvement of data
quality by using different forecasting techniques. Therefore,
we bridge this gap by introducing user-defined and condition-
based recovery in the choice of different forecasting techniques
for adaptive recovery of incomplete data on the edge.

The paper’s main contributions are summarized as follows:

• We propose a novel semi-automatic recursive mechanism
for efficient recovery of incomplete time series datasets,
incorporating a recovery cycle that ensures outliers re-
moval, detection and forecasting of each gap separately;

• We introduce a generic approach for semi-automatic
selection of forecasting techniques based on user spec-
ifications and algorithm repository. It allows selecting
suitable forecasting techniques for gaps recovery;

• Finally, we evaluate the proposed approach by utilizing
real-world time series data coming from the context of
smart buildings and smart homes.

We perform evaluation of our work by recovering missing
values caused by several monitoring system failures from
Austria’s largest Plus-Energy Office High-Rise Building. With
the proposed approach we are able to recover all gaps in
collected data, and improve accuracy of the required short and
long term data analysis. We implement our approach using
the R environment for statistical computing. We show that
our mechanism is able to decrease forecasting error by up to
82.68%, while reducing overall running time by up to 52.38%.

The rest of the paper is structured as follows. In Section II
we describe our motivational scenario and introduce time se-
ries data. In Section III, we propose our data recovering mech-
anism, describing each component and related algorithms.
We also provide an analysis of the algorithms’ complexity.
In Section IV, we present the experimental evaluation and
discuss our results. Section V presents related work, while
Section VI concludes the paper and provides an outlook for
further research.

II. BACKGROUND

A. Motivational scenario

The use of IoT architectures is constantly increasing, and
consequently also the amount of data collected by IoT smart
devices [11]. Collected datasets can bring valuable information
by performing data analytics. However, in order to extract
meaningful information from the data, we need to ensure that
datasets are complete and cleaned from outliers.

The use case we select is smart home/building applica-
tions, where energy efficient smart homes and buildings are
equipped with automated energy management systems inte-
grating renewable energy generation (solar and wind turbines),
smart meters and smart sockets [10]. We consider impact of
incomplete datasets in this scenario from two perspectives:
(1) batch (long term) and (2) near real-time (short term)
analytics. Incomplete datasets may affect batch analytics on
historical data, affecting management system (for example,
heating and cooling management), and thus decreasing energy
efficiency with increasing operational costs. Moreover, it can
affect near real-time power management system in the case
of power fluctuation caused by intermittent renewable sources
of electricity. Analytics performed on incomplete datasets
may affect also load balancing in smart grids, and therefore
reliability of energy supplies [16].

Figure 1 depicts the proposed edge analytics model for
smart buildings system. In step (1), data are collected from
smart buildings. Currently, these data are mostly processed in
cloud data centers [6]. However, due to the increasing amount
of data generated by smart buildings and homes, in step (2)
analytics are performed on edge layer to save bandwidth. Edge
layer is composed of edge nodes, such as edge gateways and
edge micro data centers, aiming to perform data processing
closer to the data sources. Once certain amount of data is
transmitted to the edge layer, user specifications are checked
in step (3). The specifications consist of application depen-
dent information and potential preferences for data recovery
process. Then, adaptive recovery process is performed in step
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Fig. 1: Edge analytics model with adaptive recovery of incomplete datasets.



(4), whose output is the dataset without gaps and cleaned from
outliers. This output is then forwarded either to edge storage or
to edge analytics operations in step (5). The analytic results are
either stored or used to take operative decisions (for example,
commands sent to actuators) in step (6).

Data analytics is performed on the edge nodes to deal with
the increasing scale of smart buildings systems. However, edge
layer has limited resources in comparison with cloud layer,
where resource demanding batch analytics can be performed.
Solutions such as resource management mechanisms [20] and
optimized service placement [21] have been proposed to deal
with the resource constraints of the edge. However, such
approaches do not propose efficient and adaptive solutions for
data quality improvement. In this work we focus on edge layer,
leaving the interplay between cloud and edge for future work.

B. Time series

There are different types of sensor-based data [22], such as
text, video, audio or social media. However, we target sensor-
based time series data that are very common in IoT data
sources for applications like smart buildings and homes [3].
Time series can be collected from systems having either equal
or unequal monitoring time intervals between data points. The
first case is more common, for example, periodically reading
weather conditions in weather stations: such data are called
evenly-spaced or regular time series. In the second case, they
are called unevenly-spaced or irregular time series. They can
occur when data collection is triggered by certain events or
whilst dynamically changing the static monitoring frequency
to avoid redundant data during steady runs of the system [23].
Since in our scenarios data analytics rely particularly on
regularly time-stamped measurements, we focus on regular
time series that incorporate potential missing/invalid values.
For the sake of clarity and consistency, we use term incomplete
data in the rest of the paper.

III. DATA RECOVERY MECHANISM

We present an adaptive mechanism for recovery of time
series. First, we define gaps in time series data.

Definition 1: A gap is sequence of one or more missing
or invalid consecutive values, irregularly distributed in time
series.
By missing values we mean data that are missing due to sen-
sors/monitoring failures and by invalid data we mean outliers
due to errors in the measurement. In Figure 2, we provide a
flowchart of the proposed recursive mechanism for recovery of
incomplete datasets. First, in data preparation component, data
are prepared for the recovering process by marking indexes of
each gap in the time series. Then, the recovery cycle starts by
using the information of data preparation component to detect
the amount of missing/invalid values. The cycle terminates
when there are no more missing values. Otherwise, the gap
identification component detects the size of the current gap,
selecting it for the separate recovering process.

Further, the data processor component analyses data points
preceding the current gap that are important for the right setup
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Fig. 2: Algorithm flowchart for the recovering process of
incomplete datasets. Solid and dashed lines represent data flow
and control flow, respectively.

of forecasting technique, according to user specifications.
Then, data needed and the selected technique are forwarded
from the repository to the forecasting process component,
where the gap is replaced by predicted values. Afterwards,
conditions for the next recovering cycle are checked. Table I
describes symbols used in given algorithms. The following
subsections describe all components in detail.

A. Data preparation

The goal of data preparation is to apply a set of operations
that ensure detection and forecasting of each gap separately. To
this end, the algorithm has to identify all missing values and



TABLE I: Summary of Notations.

Notation Description

inputdata 2D array that represents incomplete data coming from

IoT sources.

storagedata 2D array that represents data in storage.

indexmiss Vector that contains all indexes of missing values.

nomiss This variable counts number of missing values based

on indexmiss.

gapfirst Vector that stores all missing indexes for the current

gap.

outliers in the collected dataset making an incomplete dataset
ready for the adaptive data recovery process.

The data preparation process is described by Algorithm 1.
First, i and j (lines 1-2) count data from input and storage,
respectively, while line 3 creates an empty vector for indexes
of missing values in a dataset. Outliers are identified according
to the minimum and maximum values, for particular sensors,
that can be either application-dependent or predefined by user.
If a data value is out of bounds (line 5), it is replaced by
a missing value indicator (line 6) represented by a symbol
such as NA (Not Available), so that the correct value can be
efficiently estimated in the recovering cycle based on previous
data points. In lines 4-9, all outliers are replaced with NA.

Missing values can occur due to different reasons, like a
system failure. Once the system is recovered, the next value
collected by the sensors is stored immediately after the last
generated time stamp, thus making it difficult to identify a gap
in the time series. Therefore, we propose a solution where the
monitoring system stores either corresponding data value or a
missing value indicator, for each time stamp generated before
the last measured value (lines 11-21). If time stamps from
storage and input match (line 12), the corresponding value
is moved to the storage beside the time stamp (line 13). A
missing value indicator is stored in case the system does not
receive data value for corresponding time stamp (line 17). In
this case, the index of missing data is stored in the created
vector indexmiss (line 18). Once the while loop is finished,
the vector indexmiss contains all indexes of missing data.

B. Data incompleteness detection

All indexes of corresponding missing values (indicated by
NA symbols) are stored in the indexmiss vector. The number
of elements in this vector represents the number of remaining
missing values. Therefore, this number is checked at the
beginning of each cycle, and the algorithm terminates in
case there are no more missing values left (see Figure 2).
Otherwise, it continues with identification of the next gap to
be recovered. After forecasting process is finished, indexes of
recovered values are removed from the vector indexmiss.

C. Gap identification

The gap identification phase is responsible for detecting
multiple gaps in a given dataset. It identifies the beginning and

Algorithm 1: DataPreparation
Input: 2D array inputdata[timestamp, value], 2D

array storagedata[timestamp, ], variable
lowerbound, variable upperbound

Output: vector indexmiss that contains indexes of
missing values in a dataset

1 Set counter i ← 1
2 Set counter j ← 1
3 Create vector indexmiss

4 for each value i ∈ inputdata do
5 if inputdata[i, 2] < lowerbound OR

inputdata[i, 2] > upperbound then
6 inputdata[i, 2] ← NA
7 Increment counter i
8 end
9 end

10 Set counter i ← 1
11 while i <= length(inputdata) do
12 if storagedata[j, 1] == inputdata[i, 1] then
13 storagedata[j, 2] ← inputdata[i, 2]
14 Increment counter i
15 Increment counter j
16 else
17 storagedata[j, 2] ← NA
18 Add index j in vector indexmiss

19 Increment counter j
20 end
21 end

the end of each gap, using this information for the separate
recovering process. Each gap is then processed separately,
to enable selection of appropriate forecasting technique ac-
cording to characteristics of previous data or user predefined
specification. This component is described by Algorithm 2.
The counter i, that is used to iterate over the vector of indexes
of missing values indexmiss, is set to 1, while data index of
the first missing value is copied to the first place of the vector
gapfirst and stored in the temporal variable temp (lines 2-
3). Until total number of missing values is below a value in
the counter i (line 4), the counter i is updated with the next
index of missing value, while the index, stored in the variable
temp, is incremented (lines 5-6) by 1. This allows to check
whether indexes of missing values are consecutive (line 7).
In that case, the corresponding index is copied to the vector
gapfirst (line 8). Otherwise, if there are no more consecutive
indexes (line 9), all missing values from the current gap are
detected and the vector indexmiss is updated in line 10.

D. Data processor

This component performs the extrapolation of data char-
acteristics or parameters needed for application of particular
forecasting technique. Additionally, it can perform also data
classification or aggregation. The obtained data are forwarded
to the forecast algorithm repository that contains multiple data



Algorithm 2: GapIdentification
Input: Vector of indexes of missing values

indexmiss, variable nomiss that contains
number of missing values

1 Set counter i ← 1
2 Create vector gapfirst[i] ← indexmiss[i]
3 Create temporal variable temp ← indexmiss[i]
4 while nomiss > i do
5 Increment counter i
6 Increment variable temp
7 if temp == indexmiss[i] then
8 gapfirst[i] ← indexmiss[i]
9 else

10 Remove indexes of gapfirst from indexmiss

11 break;
12 end
13 end

recovery techniques. Necessary characteristics are obtained
during analysis of available data up to the first missing index
k of a potential gap. After the current gap is identified (in
the last component), in order to efficiently forecast missing
values, predecessor data are analyzed to derive parameters
that are necessary for the forecasting process. Parameter se-
lection depends on the forecasting technique. Semi-automatic
mechanism allows two possible scenarios: (1) single-technique
recovery and (2) condition-based recovery. In the first sce-
nario, users can either select an existing technique, or adding a
new one to the algorithm repository. The selected technique is
used for recovering all gaps. In the latter scenario, technique
selection is performed at runtime, either according to user-
specified conditions or automatically. In this work, we focus
on selection based on user-specified and predefined conditions.
Full-automatic selection is left for further research.

The data processor is present in each cycle, because values
of forecasting parameters may be different when analyzing
predecessor data of next possible gaps. The information about
the forecasting technique is forwarded to the next component
by the algorithm repository.

E. Forecasting process

In this component, a forecasting technique is selected from
the repository and applied on current gap. Figure 3 illustrates
the adaptive recovery process including aforementioned pro-
cesses. After corresponding missing indexes are stored by
data incompleteness detection component and the first gap
identified by gap identification component, data processor
component analyzes predecessor data before the gap. Se-
lected forecasting technique is then applied for the recovering
process. The figure shows our approach, where forecasting
process component applies different techniques (t1, t2 and t3)
for different gaps. The choice of suitable techniques depends
on data characteristics and forecast objectives as described
in [24]. In this work we select three techniques, according to
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Fig. 3: Adaptive data recovery process for multiple gaps.

different dataset characteristics: (1) the Autoregressive Inte-
grated Moving Average (ARIMA) method can be used if data
contain stationary characteristics, such as trend stationarity,
that can be explored by methods proposed in [25]; (2) the
Exponential Smoothing method (ETS), although overlapping
in same cases with ARIMA models, can be used for short-
term seasonal series; (3) the TBATS [26] forecasting model
can be used for time series with multiple complex seasonality
or with long seasonal periods. If seasonality occurs in time
series, by checking periodicity, the data processor component
can forward that information to the next component. Users can
also specify additional information about the data, such as a
monitoring frequency for seasonality: for example, if temper-
ature data are collected every five minutes, then the seasonal
parameter value 288 (12*24), representing the expected daily
seasonality, is included in the forecasting procedure. Further,
users can specify that for each gap containing less than 10
missing values, n-point average method is selected.

When all necessary parameters are forwarded from the data
processor, the forecasting process can start. Missing values are
replaced in the original dataset, and their indexes are removed
from the vector indexmiss. When the current gap is recovered,
the next gap (if exists) will be considered in a new recovering
cycle. The recovering process stops when no more missing
values in nomiss are left.

F. Algorithm complexity

The computational complexity of the proposed mechanism
depends on the complexity of each algorithm. By analyzing
Algorithm 1, looking at the for loop (lines 4-9) and the while
loop (lines 11-21), the algorithm iterates over available dataset
making it O(n), where n represents number of data points in
the dataset. Further, entering in the while loop of Algorithm 2
in line 11, iterates the vector of indexes of missing values that
are always less than the number of data in the available dataset.
For all other lines, complexity is O(1). In case forecasting
process uses the ARIMA technique, the time complexity to
forecast certain amount of data is O(n), where n is the number
of data points in the training data used for forecasting, and



thereby it would result in the overall complexity O(n). Running
time is affected by different factors, such as the size of
the gap that has to be recovered and seasonal complexity
of time series. Time complexity also highly depends on the
complexity of selected forecasting technique. However, since
the proposed mechanism targets resource-limited edge nodes
and analysis for near-real time decisions, the size of input and
dimensionality of incompleteness are not expected to be big
enough to violate the time requirements.

IV. EXPERIMENTAL EVALUATION

We implement the proposed mechanism by utilizing the R
language using the forecast package [27]. We evaluate the
applicability of the proposed approach by recovering multiple
gaps in different datasets and measuring accuracy and runtime
for three cases: (1) ARIMA, (2) ETS and (3) AdaptOpt
(Adaptive Option), respectively. In first two cases, the same
technique is used for all gaps, that is, single-technique recov-
ery, while in the last case, condition-based recovery, based on
combination of different forecasting techniques on different
gaps, is employed. All the simulations and the running time
are obtained on a 64-bit Windows 10 machine, configured with
a 2.70-2.90 GHz Intel i7-7500U CPU and 16 GB memory.

A. Data

We evaluate our approach on data from real-world IoT
systems that are the main target of this work:

1) Data collection from smart buildings. Datasets from
this source are obtained by the monitoring system of
Austria’s largest Plus-Energy Office High-Rise Build-
ing [28]. Sensor-based data collection contains various
measurements such as power usage, electricity consump-
tion and production, temperature and air quality, that are
used for operative decisions such as automatic heating
and cooling, ventilation, efficient energy consumption;

2) Data collection from smart homes. Datasets from this
source are obtained by UMass Trace Repository [29]
containing traces from the Smart* project [30] for the
purpose of optimizing energy consumption in designing
smart homes. It represents variety of environmental and
electrical type of data, such as temperature, humidity,
wind information and heat index.

After applying proposed mechanism on collected datasets,
we select two representative from each source, targeting char-
acteristics such as sensor type and range of values, as it is
shown in Table II. Each dataset contains around 14600 data
points for experiments.

In both datasets by source 1, we observe several gaps
in collected data that affected data analytics. Therefore, to
evaluate proposed approach, after the analysis of datasets we
identify those gaps and artificially made several gaps with
approximately same sizes, precisely, gaps with 238, 3 and
5016 consecutive missing/invalid data values. Then, these gaps
are recovered using the proposed mechanism, and forecast
accuracy is evaluated by comparing predicted data with actual
data from each gap. This choice has been made to ensure a fair

comparison between all techniques, comparing them according
to the forecast error they achieve on the same gap sizes and
on the same data.

For the forecast accuracy evaluation, we use Mean Absolute
Percentage Error (MAPE) measure that expresses accuracy of
prediction as a percentage based on forecast error. As a scale-
independent measure, it allows us to compare effectiveness of
recovering process among different types of datasets.

B. Experimental results

We apply the proposed mechanism and show two represen-
tative examples among used datasets from each of data sources
as it is illustrated in Figure 4. Each example is represented in
a separated sub-figure. Each sub-figure consists of two graphs:
the upper graph indicates incomplete dataset before recovering
process, while the lower graph indicates complete dataset after
applying recovering procedures. Gray shaded areas indicate
three gaps, precisely, 238, 3 and 5016 missing values in a
sequence. The black solid line represents existing values, that
is, the actual state of a collected dataset on the edge. The black
dashed line shows actual data for corresponding gaps, while
the red solid line represents predicted values of missing data
points as an output of applied forecasting techniques. In this
case, all gaps are recovered using ARIMA technique from
R forecast package, representing single-technique recovery
scenario. It can be seen that time series in the first sub-figure
contains deterministic linear trend pattern that makes ARIMA
forecasting appropriate and more accurate in comparison to the
behavior of time series shown in the second sub-figure. This
dataset shows an irregular pattern making forecasting process
more difficult. For this type of time series, where no trend
or seasonality can be captured, the algorithm calculates best
suitable straightforward prediction line with 95% confidence
interval. For this reason, the MAPE of reconstructed gap 3 by
bsmart2 is around 1.68315%, while the MAPE for the same
gap by bsmart1 is around 0.11999%. It can be also seen that, as
the gap increases, the forecasting error increases too. Finally,
the graph confirms that the proposed automated recursive
mechanism is able to efficiently cope with multiple gaps by
forecasting all gaps with running time of 2.27s and 4.18s
(see Figure 6), for bsmart1 and bsmart2, respectively. These
scenarios simulate users that specify a particular forecasting
technique for the whole recovering process of incomplete
dataset (see Subsection III-D). On the other hand, based on
the proposed mechanism, it is possible to specify different
forecasting techniques involved in recovering process of each
gap separately, that is shown in the following section.

TABLE II: Dataset Information.

Source Dataset Sensor type Range of values

1
bsmart1 el. meter [kWh] 21.71-23.37

bsmart2 room temp. [C] 21.06-23.78

2
hsmart1 room temp. [F] 65.89-83.30

hsmart2 heat index [F] 27.86-107.64



(a) (b)

Fig. 4: Results of semi-automatic recursive recovery of multiple gaps. Sub-figures (a) and (b) are representative examples
of recovered gaps for datasets bsmart1 and bsmart2, respectively. It shows results of single-technique recovery. In this case,
ARIMA is used for all gaps, instead of selecting the most appropriate recovery method for each of three gaps, as in condition-
based recovery. Therefore, flat forecasts for the third gap (Figure 4b) depict the same possible mean value for missing data,
since the selected method is not able to obtain significant characteristics such as trend or seasonal components of prior data.

C. Discussion

We compare forecast accuracy measures (Figure 5) and
perform code running time analysis (Figure 6), showing the ef-
ficiency of the proposed mechanism with selection of different
forecasting techniques from the repository. Beside possibility
of using different techniques for each time series, it is also
possible to select different techniques for each gap. This allows
to avoid computation expensive techniques for small gaps or
individual missing values and thus improving performance.

Figure 5 depicts the proposed mechanism applied on each of
four different datasets containing same sizes of multiple gaps.
Each of four sub-graphs represents one dataset. The recovering
process is tested by utilizing different forecasting techniques
in three cases shown on horizontal axis, (1) ARIMA, (2) ETS
and (3) AdaptOpt, respectively. In first two cases, the same
technique is used for recovering all gaps. The latter (Adaptive
Option) depicts the second scenario, where we utilize a
combination of different forecasting techniques, showing the
benefits of recovering procedure. Vertical axis shows MAPE
for corresponding gaps. Comparing the MAPE between same
gaps within one particular dataset, the error increases as size
of gap increases in bsmart1 and bsmart2, while for hsmart1
and hsmart2 is the opposite. The reason lies in wider range of
values and more volatile behaviour for data from the source
two, where, e.g., for bsmart2, the error increases by 107.02%

on average, while for hsmart2 it decreases by 46.47% on
average, between gaps 1 and 3.

For the case 3, in each dataset, three gaps are recovered,
respectively, by applying techniques ARIMA, ETS, ARIMA
for bsmart1, ARIMA, n-point average, ARIMA, for bsmart2,
TBATS, n-point average, ETS, for both, hsmart1 and hsmart2.
With this setup, we are able to reduce overall running time
by 25.11% and 52.38% for bsmart1 comparing case 3 to
cases 1 and 2, respectively, and in the same time having
82.68% less forecasting error for gap 3 comparing with case
2. For bsmart2, we have a slightly better forecast accuracy, but
reduced overall running time by up to 48.09% in comparison
to cases 1 and 2. Additionally, by performing n-point average
for the gap 2, we were able to completely recover that gap,
having 0 for the MAPE value, because of the presence of
redundant predecessor values. Although the running time for
the case 3 is not the lowest for hsmart1 and hsmart2, the error
decreases up to 41.2% for the first gap of dataset hsmart2. By
performing the proposed AdaptOpt in case 3, depending on
type of datasets, we are able to reduce either only forecast
error or both, the error and the running time.

Figure 7 shows absolute percentage error behavior for
two datasets (bsmart1 and hsmart2) along two bigger gaps
(gaps 1 and 3) of the incomplete data. It illustrates that
application of proposed AdaptOpt approach, in overall, results
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(c) Data recovery in dataset hsmart1.
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(d) Data recovery in dataset hsmart2.

Fig. 5: MAPE accuracy measure for three recovered gaps of missing values among 4 datasets. All three gaps (that is, 238, 3
and 5016, respectively), are recovered by utilizing different forecasting models in three cases: ARIMA, ETS and AdaptOpt.
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Fig. 6: Running time of recovering all gaps.

in smaller error which is shown also by calculated trendlines.
Although the gap to recover can be significantly bigger (5016
values), we see that the MAPE increases only by up to 0.31%
for bsmart1 and to the peak value of 46.57% for hsmart2.
Because of the volatile behavior of data from hsmart2, the
error can come to the higher peak values. However, with the

appropriate methods, it can be greatly improved, for example,
using ARIMA instead of ETS and TBATS instead of ARIMA
for bsmart1 and hsmart2, respectively. Considering unlikely
cases with big gaps at the edge, the experimental results
confirm benefits of our approach, and especially of selection
of different techniques for recovering different gaps within the
same incomplete dataset.

V. RELATED WORK

In the last few decades, time series forecasting gained
much attention due to necessary predictive analytics that
rely on increasing amount of time-stamped measurements.
Authors in [24] provide an extensive overview of existing time
series forecast methods, including a self-adaptive approach for
optimized forecasting method selection based on users’ fore-
casting objectives. The use of different forecasting methods
is motivated by the fact that forecast accuracy depends on
characteristics of data before each gap, therefore we chose
ARIMA, ETS and TBATS, described also in [31], [26]. Also,
these methods do not require constant user interactions. Thus,
we use them for adaptive recovery of multiple gaps, due to
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(b) Recovered gaps from hsmart2.

Fig. 7: Absolute percentage error behavior along recovered gaps comparing with proposed AdaptOpt (case 3).

the near real-time requirements of systems, running on self-
contained edge nodes, such as IoT applications.

Wellenzohn et al. [19] propose Top-k Case Matching
(TKCM) for imputing missing values in time series. Based on
principles of correlation between time series, it is possible to
impute missing values in streams of data by comparing incom-
plete series with a set of reference time series, and additionally
allowing phase shifts. In [18] a program for imputing missing
data in multivariate time series is proposed for handling
missing data from stationary processes. Since most of the IoT
measured processes are non-stationary, the proposed approach
cannot be easily applied and can be inefficient for univariate
time series. Also, none of the proposed approaches allows
recovering of multiple gaps separately giving the possibility
to select different models for recovery. In [32], the authors
design an adaptive model selection based on Hidden Markov
models aiming to constantly validate mean percentage error
in a prediction algorithm, resulting in a higher accuracy in
time series of stock price prediction. The approach constantly
validates mean percentage error to find best model. However,
machine learning based models for prediction of missing
data are time consuming and require training, making these
approaches difficult for data recovery on the edge.

Further, authors in [33] focus on data management solu-
tions, proposing a comprehensive description of components
of IoT data management framework. The authors mostly
target design elements for efficient data handling. Furthermore,
in [34] univariate imputation is used for air pollution data,
but this approach target gaps of fixed size. The challenge
of recovering missing data has been investigated by many
researchers, providing methods relying on cubic interpola-
tion [35], Singular Spectrum Analysis [36] or Lomb-Scargle
method [37]. However, these works either have not been
validated on IoT sources or propose approaches targeting only
specific cases of time series. In this work, we show how to
combine different forecasting techniques for the recovery of
different gaps affecting both, the accuracy and performance
of recovering processes. Additionally, the proposed approach
allows users to specify preferred conditions and define other
algorithms for recovering of incomplete data.

VI. CONCLUSIONS AND FUTURE WORK

Analysis of data including missing or invalid measurements,
may affect quality of decisions for many IoT applications
such as energy efficient smart buildings or smart homes. To
increase accuracy of near real-time data analytics, particularly
for time-sensitive IoT applications, it is necessary to efficiently
recover incomplete datasets beforehand. We propose a mech-
anism for semi-automatic recovery of incomplete time series
coming from IoT sources, relying on edge nodes that are
closer to the source of data, instead of utilizing only cloud
resources. Applying proposed concepts, we are able to remove
outliers, detect and recursively recover all existing gaps in
incomplete datasets. Also, we introduce a two approaches for
the selection of forecasting techniques from the algorithm
repository, namely, single-technique recovery and condition-
based recovery. Experimental results show that using the
proposed approach, it is possible to have up to 82.68% less
forecasting error in comparison to recovering with the same
method for all gaps. Concurrently, the overall running time of
recovering process can be reduced by up to 52.38%.

Nonetheless, we are aware that recovering process depends
on multiple elements including number of missing/invalid data
values, gap sizes, time series data behavior and the perfor-
mance of used techniques on that elements. In case of full-
automatic mechanism, that is, based on the preliminary char-
acteristics of prior data without user interaction, we plan to ex-
tend our work by exploring how to automatically adapt trigger
conditions for using different forecasting techniques. We also
consider involving machine learning predictive analytics, by
partially employing cloud resources and thereby crossing over
expensive and time-consuming learning processes. Moreover,
it would be interesting to explore possibility of recovering
missing data using information from correlated time series.
Finally, we plan to extend our approach to scenarios with strict
latency requirements, such as eHealth and intelligent traffic
management systems. In the first case, we plan to use our
approach for recovering of datasets used for real-time analytics
in monitoring illnesses such as diabetes and heart diseases, to
help such systems to timely react to the change of patients’



condition. In the latter case, our mechanism can be used to
recover datasets coming from road sensors, helping the system
to accurately and timely react before collisions happen.
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[37] K. Hocke and N. Kämpfer, “Gap filling and noise reduction of unevenly
sampled data by means of the lomb-scargle periodogram,” Atmospheric
Chemistry and Physics, vol. 9, no. 12, pp. 4197–4206, 2009.


